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A Three-Dimensional FDTD-PML Algorithm
for Nonlinear Dispersive Media

S. J. Yakura

Air Force Research Laboratory, Directed Energy Directorate
Kirtland AFB, New Mexico 87117

Abstract
Starting with the unsplit-field uniaxial PML formulation, a second-order accurate FDTD-PML algorithm is
obtained for the first time using the piecewise-linear approximation for nonlinear dispersive PML media.
In the absence of the PML interface, the nonlinear dispersive FDTD-PML algorithm reduces to the usual
nonlinear dispersive FDTD algorithm.

I. INTRODUCTION

With the advent of high power computers that provide fast execution times and great quantities of
computer memory, we are at the stage where we can perform direct numerical calculations of Maxwell’s
equations in nonlinear dispersive materials. Out of many numerical techniques available in the
computational electromagnetic community, one that has shown a great promise in the time domain is the
well-known finite-difference time-domain (FDTD) method [1]. It is based on using a simple staggered
differencing scheme in both time and space to caiculate the transient behavior of electromagnetic field
quantities. One of the greatest challenges of the FDTD methods has been the efficient and accurate
formulation of electromagnetic wave interactions in unbounded regions. For such problems, an absorbing
boundary condition must be introduced at the outer layer boundary to simulate the extension of the lattice
to infinity. One approach that has given a great promise in realizing such an absorbing outer boundary
inside the finite volume computational domain is the well-known perfectly-matched-layer (PML) algorithm
that was first introduced by J. P. Berenger [2] in 1994 for the free space boundary. Since that time Chew
and Weedon [3] came up with the modified PML algorithm that is based on complex coordinate stretching,
which is shown to be equivalent to the anistropic PML medium approach [4].

In this paper, we explore the formulation of a 3-dimensional perfectly-matched-layer (PML) algorithm
that is used to describe the behavior of electromagnetic quantities in outer absorbing boundary layers of a
nonlinear dispersive medium which serves to absorb all outgoing waves within a finite computational
volume. We consider the case where a plane wave propagates outwardly from a nonlinear dispersive
medium to a nonlinear dispersive PML medium through a reflectionless PML interface. We start the
analysis based on the extension of the unsplit-field uniaxial PML formulation [4-8] of Maxwell's equations
that are obtained in the frequency domain inside the nonlinear dispersive PML medium. We perform the
inverse Fourier transform of these equations from the frequency domain to the time domain in order to
obtain a set of ordinary first-order differential equations. Then, these equations are finite differenced in
both time and space using the usual staggered Yee FDTD scheme while expanding the electric and
magnetic field vectors in time using the Taylor series expansion about the current time step to evaluate next
time step values of the electromagnetic field quantities. Depending on the number of terms kept in the
Taylor series expansion, we can numerically update the field values to any desired accuracy. In Section II,
we use the piecewise-linear approximation, which is equivalent to using only the first-order, time-
dependent term of the Taylor series expansion, to show the process involved in obtaining a second-order
accurate FDTD-PML algorithm. To obtain higher-order accurate FDTD-PML algorithms in time, we
simply need to include higher-order, time-dependent terms in the Taylor series expansion and follow the
same steps shown in Section II.

In the absence of the PML interface, the FDTD-PML algorithm reduces to the FDTD algorithm obtained
for nonlinear dispersive media [9,10].



II. PML FORMULATION FOR NONLINEAR DISPERSIVE MEDIA

For a wave propagating into anisotropic, uniaxial nonlinear dispersive PML media, the modified
Maxwell’s equations under the PML formulation with stretched coordinates [3] can be expressed in the

‘frequency domain (" convention) as

V XE(;x) =-i $™ (@) o popz H(ws %) , @.1)
VxH(x) = io S™ @ eD(®x), 2.2
with
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where E(®;x) is the electric field vector, H(w;x) is the magnetic field vector, D(w;x) is the displacement
field vector, ljp"(o);g) is the linear (first-order) electric polarization vector, EPNL(m;_)g) is the nonlinear

(third-order) electric polarization vector, §PML (w) is the uniaxial anisotropic PML matrix, &, is the free
space electric permittivity, € is the relative permittivity, [y is the free-space permeability, i is the relative
permeability, X,"(t) and XpNL(t) are the pth terms of the collection consisting of P,y time-dependent linear
and nonlinear electric susceptibility functions, where Py, is the maximum number of terms which we

choose to consider for a particular formulation of Eq. (2.3). In Eq. (2.5) RpNL(t;g) is introduced to isolate
the part of E‘,M‘(m;;) that is represented by a convolution function. Also used in the above equations are

notations e and F{ }, respectively, denoting a dot product and the Fourier transform operation. Elements of
the uniaxial anisotropic PML matrix, S PML (w), are given by

Sy (S, () 0 0
S, (w)
PML - S X ((1)) S z ((D)
§_ () = —————-——-—S ) 7S 0 . 2.6)
. S, @S, @)
S, (w)

where Sy(®), Sy(w) and S,(w) are arbitrarily defined w-dependent functions that satisfy the impedance
matching condition at the interface of the non-PML medium and the PML medium. It is a common practice
in the FDTD community to choose S,(®), S,(®) and S,(w) in the following forms:

*
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where oy, oy and o, are the PML electric conductivities, and Or» 0; and o, are the PML magnetic
conductivities with subscripts x, y and z denoting the directions in which PML conductivities are assigned
[2]. These PML conductivities are introduced arbitrarily in order to implement the FDTD-PML algorithm.

We first eliminate D(;x) in favor of expressing Maxwell’s equations in terms of E(w;x), BPL((D;L) and
_Epm“(m;l) by substituting Eq. (2.3) into Eq. (2.2). Upon taking the inverse Fourier transforms of Egs. (2.1),
(2.2), (2.4) and (2.5) and using the expressions shown in Egs. (2.7) through (2.12), we obtain the following
time-dependent equations:

uouxa—%(—t:ﬁ+ pop= oo H(t; x) + uouag-ﬂ_m“y (tx)+VXE(t;x)=0, (2.13)
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In the above, H™®(t;x), EP™(t;x), P,"""¥(t;x) and P,""*¥(;x) are introduced to handle the delayed
time-response behavior of H(t;x), E(t;x), PpL(t;x) and [E(t;L)RpN"(t;L)], respectively. These functions follow

naturally from taking the inverse Fourier transforms of convolution functions [1/(i(ol+ 2)] H(m;x),
(o1 +A)] E(@x), [1/G0]+A )] BX(w:x) and [1/(i®]+A )] P," (@x) by realizing the inverse Fourier
transform of [1/(im!+2)] is given by exp(- it), where I is the identity matrix and A is a time

independent diagonal matrix expressed as diag [ 6x /(E-Er)> Gy /(EoER)» 62 /(EoER)]-

To solve Egs. (2.13) through (2.20), we need to specify expressions for linear and nonlinear electric
susceptibility functions. In this paper we consider the case in which both the linear and nonlinear electric
susceptibility functions are expressed as complex functions that contain complex constant coefficients and
exhibit exponential behavior in the time domain as follows:

x5 (1) = Re {ofexpl-(vp)t1 } U(D), (2:24)

and

XpT (1) = Re {ap exp[—(v, )11 } U() (2.25)




where Re{ } is used to represent the real part of a complex function, U(t) is the unit step function, and
ap ,Y:,‘,a{;"“ and yg"“ are complex constant coefficients. Now Egs. (2.15) and (2.16) are expressed in the

following forms:

t
B; (tx) =Re Q] ()} =Re {a} [drexp~ap)t-DIEwD }. (226)
and
t
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where complex functions Qp (t;x) and Qp L (t;x) are introduced in the above equations such that the real

parts of these complex functions result in P, L(t;x) and Rp L(t:x), respectively.
We need to point out that by making the proper choices of complex constant coefficients and performing
the Fourier transforms of Egs. (2.24) and (2.25), we can readily obtain the familiar constant conductivity

lie, of is real,y{;: 0,0 =0 and y}f’“: 0], Debye [ie., o ,y:;,a},‘m and 'yg"‘ are all real] and Lorentz
fi.e., af and o) are both imaginary, and y:; and yg“‘ are both real] forms of the complex permittivity in the
frequency domain.

To derive FDTD expressions based on Yee FDTD scheme, Eqs. (2.13), (2.14), (2.25), (2,26) and (2.17)
through (2.20) have to be solved numerically for H(t;x), E(t:x), Q,"(t:X), Qp "(t;x), H*™(t;x), E™™(t;x),
P Ll)"“‘y(t x) and P NLD""‘y(t x) at each time step by correctly carrying out the numerical integration of
convolution integrals Q,"(t:x), Q" -(t:x), H™*™(t:;x), E™™(t;x), P,"™*™(t;x) and P NLDelay(t X). Therefore,

the whole solution rests on the question of how to carry out the numerical integration of _Qp (t;x), Qp (t;x),
H>™(t:x), E™™(t;x), P,"¥(t;x) and P,N""*®(t;x) at each time step For that reason, the rest of this section
is devoted to the numerical formulation that treats Qp (t;x), Qp (t:x), H®¥(t;x), E®™(t;x), P LDe""y(t X)
and P, NLI""‘"“y(t X) into the overall FDTD scheme based on the recursive convolution approach.

We first convert the convolution integrals Qpl‘(t;g), QpNL(t;l), H>®¥(t;x), EP¥(t;x), _Epw“'a"(t;g) and
P, "P¥(t:x) into the following equivalent first-order differential equations:

L .
M:r Ly QY (£ x) = oL E(t: 228
P + (1 (60 =BG, (2.28)
39 50 L (M) QM (130 = o E( ) ECt 0] 2.29)
at P Y ’ "
Delay /..
EHa—t(t’l_) +@WeH™™ (tx)=Ht), (2.30)
Delay ..
9—27“’}1 + 0 E™ (5 =E:x), @31)
9Q7™ (t;x)

LDelay ... L.
57 +2(1*Q M (1= (t:x), (2.32)



ag‘I;ILDelay (t;l)

- 2+ G0 =EtD Q" :x), (2.33)
where complex functions Q,""™ (t;x) and Q, NLDelay ((.x) are introduced in Eqgs. (2.32) and (2.33) such that
the real parts of these complex functions result in Pp"m”y (t;x) and P, NLDelay(1.x), respectively.

To show how we can use Egs. (2.13), (2.14) and (2.28) through (2.33) to come up with a 3-D
FDTD-PML algorithm for nonlinear dispersive PML media, we integrate Eqs. (2.13) and (2.30) from
t=(n-Y2)At to t=(n+%2)At, and Egs. (2.14), (2.28), (2.29) and (2.31) through (2.33) from t=nAt to t=(n+1)At.
Then Eqs. (2.28) through (2.33) are solved exactly using the integrating factor technique for a given
discrete time interval to go forward in time by At. The result is that we need to perform definite integrals
that appear in the following equations:

(n+¥%)At aH(‘t X) (n+%)At
Mopla f otk ope oo Idr H(tx)
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Furthermore, some of the definite integrals that appear in Eqgs. (2.34) and (2.35) are manipulated and cast in
the following forms:

(n+%4)At (n+%)At
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To obtain second-order accuracy in time from a finite differencing technique, H(t;x) and E(t;x) are taken
to be piecewise-linear continuous functions over the entire temporal integration range such that H(t;x) and
E(t;x) change linearly with respect to time over given discrete time step intervals. It is equivalent to saying
that we use only the first-order, time-dependent term of the Taylor series expansion for H(t;x) and E(t;x),
respectively, that are expanded in time about the current time step of t=(n-¥3)At for H(t;x) and the current
time step of t=nAt for E(t;x). Mathematically, we can express H(t;x) and E(t;x) in the following forms in

terms of (LI) ijkn.

%, (M, By and (E)i"™"' where superscripts n-%2, n, n+% and n+1 are used to denote

discrete time steps at t=(n-%2)At, t=nAt, t=(n+%2)At and t=(n+1)At, respectively. Subscripts are used to

denote discrete

spatial locations, x=[iAx, jAy, kAz] for E(t;x) and x=[(i-%2)Ax, (j-Y2)Ay, (k-¥2)Az] for H(t;x)

with Ax, Ay and Az being the spatial grid sizes in the X, y and z directions, respectively.

.

L, [EDE% -@E*)
) + i A t(_) B [t (n—Y¥)At]+ higher order terms,
H(t:x) = for 0S(n-%)At<t<(n+¥)At  (248)
0, for t<0
B -®)
B + —(;%—(ij] (t—nAt) + higher order terms,
Etx) = for 0<nAt<t<(n+DAt (2.49)
0, for t<0




Although we are not going to investigate higher than second-order accuracy in time in this paper, it is
possible to obtain higher-order accurate FDTD algorithms by simply including more terms beyond the
first-order, time-dependent term in the above Taylor series expansion.

Substituting Egs. (2.48) and (2.49) into Egs. (2.34) through (2.47) and performing the time integration
from t=(n-12)At to t=(n+Y¥2)At for field values that depend on the magnetic field {i.e., H(t;x) and HDelay(t;x)],
and from t=nAt to t=(n+1)At for field values that depend on the electric field fi.e., E(t;x), Qpl‘(t;_)g),
Q. (t:x), EP*(1;x), Q"> (t:x) and Q,N"P®(t;x)], Egs. (2.34) through (2.47) are cast into the following

cubic algebraic expressions. These expressions are used to update field values (H)i™%, B, Qo™
(QpNL)ijan, (_E—Delay)ijan’ (HDelay)ijkm%, (QPLDcIay)ijknﬂ and (QPN'LDelay)ijan at each time step.

Qo " +Q, « (B +Q, e ™))" +Sg =0, 2.50)
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s 20
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+Re{2 NL} u,,k[(E)l,k-<E).,k1+Re{2 Y@ [®h «®5']
+Re{2 o }e (E).,k[®:};‘-®;;:‘1+ke{2 ”L}-<E>:}:‘[<.E_)z}k-®:;k]
+Re{§‘, i) (E):}:‘HE).,k-(Ex;:‘]+Re{2 Mle®N [E®L «®5]
+S_H—0, .51

Q" = 050 [(@Q)5k +O51 B +05, ®i'], 2.52)

Qi =055 [N +0pT [E) *®i1+0,5 [B) B3]

+0,5 (B «®5'1], (2.53)
@Delay)ﬂz% .Q,= [(_I:I_Delay)inj:/& +9__5.(.H)i.}l:% +ﬁ (._)g+'/i] (2.54)
E>™)5 =24 [ E™) +Q5 2@ + 25+ ®F'], (2.55)
Q7" =24 o[ @™ +1T50 #(@Q, )i +1Tgs ¢ B +Ii2 s ®fi' 1. (2:56)

@5 =24 o[ Q™) + @M Iy » ®f +QPMf I + @Y
IG5 « ©f [ * ®+ o5 » B [ B @
+ H—”.% *® [®F e ®i'1+ n::% c®f [ ®f*®f]
+H“L O [ @ s ®1+ 17« BF L+ B I @2.57)

where Sg and Sy are given by



—_— At
(}LOHR) Ay [, Digrax — (B, )l(l—-l/z)k] Az — (e sy — B )u(k_l/z)]
At At ) )
(p'op‘k)AZ [(E x )ij(k+'/z) - (Ex )ij(k—l/z) ] - (“ u )A [(Ez )(i+l/.-)jk - (Ez ) (—-4)ik ] s (258)
(MOP-R) Ax [( y )(1+%)Jk (E )(1-!/2)]1( ] (e HR) Ay [(E ) Gk -(E, )l(]—‘/é)k]
At o 24 y .,
B (505 )A [, )i(;*/'z/@k - (Hz)i(;—?/z)k 1 + [(H )lj(.;{i-%) H )U&G/»
(€°8R)AZ [,k - (H i ] + [(H Yo —E G %] | (2.59)
(i ~ B . e (O - ]

and (Ao) ik and (Al);}k are the matrices that depend on (me“)}}k , material properties and At, and @IE,o’

et epz,epo,@m,@pz,693,90,91,92,93,94,95,96, ,rg,%,rp, rpz,

Pl

NL
Fp3 , I“p4 , Fp_ Hpo s pl, sz ,Hpo , Hpl , I'Ipz , Hp3 , Hp4 , pS , H and Il 7 are

the coefficients and matrices that depend only on material properties and At. The material properties
required for the evaluation of these coefficients and matrices are o, y’p‘ ., opT, ygn‘, Ox» Oy and 0.

Shown in Appendix are the expressions of these coefficients and matrices. -
Using the above FDTD-PML algorithm the computer simulation can be performed for electromagnetic
waves that propagate inside nonlinear dispersive PML media by simply going through the following steps:

(1) First, as part of the initial condition, time-invariant coefficients © 0.0 ®p 10 @p 25 G)p 0> Gp, ,

L NL NL
pl’r Fp.3’Fp, FpS’ 90’ p,,HzHpo,le,sz,HM,HM,HN,

IIE'}; and I'IEI.,‘ are all calculated at the beginning of the simulation for given values of af , ‘y,l; ,

apt, 'YgL , O » Ox» Oy, 0, and At. These values are stored in computer memory and used in
calculating the updated field values at each time step.

(2) Using Eq. (2.50), (H);"*™* is calculated based on the known values of (B and (P ik 72 and
(E)ljkn .

(3) Using Eq. (2.54), (H™™);™* is calculated based on the known values of (H>®)y"%, M)y

and (—)l.lk
(4) Using Egs. (A.8) and (A.12), (Ao);}k and (A)) gk are calculated, respectively, with the values of

(QpNL)ljkn .

(5) Using Eq. (2.51), (E)i™" is calculated based on the known values of (E)y", (E E), Qo s
(Q,P);," and (H)y%. Because Eq. (2.51) represents coupled, cubic, algebraic equations, the
nonlinear Newton-Raphson method [11] is used to solve for (E)y" o+l by finding the zeroes of
Eq. (2.51) with (E)y" as the initial guess.

(6) Using Egs.(2.52), (2.53), (2.55), (2.56) and (2.57), Q)i o+l (Qp i n4l (_Delay)IJ o
(Q‘,"D"“'y)lJ ™1 and (Q%f:‘*""*‘y), 22! are calculated based on the known values of (_E),Jk » B
(Qp )1_|k s (Qp )ljk s (._ lay)uk ’ (QPLDelay) jk and (QpNLDelay)qk .

(7) Increment the time step by At. Go back to step (2) and repeat the whole process over again.

Shown in Figure 1 is the flow chart of numerical steps required to update field values as described above.
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In the absence of the PML interface, oy, oyand o, are all set to zeroes and the nonlinear dispersive

FDTD-PML algorithm reduces to the usual nonlinear dispersive FDTD algorithm obtained for a nonlinear
dispersive medium with the third-order electric susceptibility functions [9,10}.

Also, we get the linear FDTD-PML algorithm by simply setting )™ to zero. Furthermore, if both ab

and o {;"‘ are set to zeroes, the FDTD-PML algorithm reduces to the case of the simple PML algorithm in
free space.

HI. CONCLUSIONS

We present in this paper the formulation of a three-dimensional FDTD-PML algorithm inside nonlinear
_ dispersive PML media that is used to absorb all outgoing electromagnetic waves within a finite simulation
volume to create the notion of infinity at the outer layer boundary of the computational volume. Because of
the use of the piecewise-linear approximation, the FDTD-PML algorithm provides second-order accuracy
in time for the calculation of electromagnetic field quantities. The resulting forms of the FDTD-PML
algorithm tell us that we need to solve coupled cubic equations for the three components of the electric
field vector at each time step due to the nonlinear behavior of the third-order electric susceptibility
function. In the absence of the nonlinear contribution, the electric field components are no longer coupled
and each component of the electric field vector can be updated independently of the other two components.
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APPENDIX

This appendix gives the explicit expressions of coefficients and matrices seen in Eqs (2.50) through
(2.57). The coefficients and matrices shown below are for (-DPO, 9‘,1, @p2 , @po , p, s 992 ) ®p3 ,

(AO)uk’ Ay )uk’ QOa 91, Q2 > 93, Q4 s 95’ 96’ r;“,o’ Fp,O s 1-‘p, sz , Fp3 ’ p4 > FpS >

Hp 4 I'Ip5 , NL and H . Also, to express these

g, . Mgy, T, 155 pl,sz, b5 »

coefficients and matrices in more compact forms, additional terms, such as E_,:;,o , E:;,l s };,2 , Y;g{; , ég{ll‘ >
ENE, ENS. Ghis Ghas Shis Shae Shs Spdr (Wohxs (Wxs (Waas @)x> @xs Goodxs (G
(sz)x’ (C )x' (gpl)x’ (CQZ)X’ (Cp})x’ (Cp4)x9 (CPS)X’ (c )x’ (c 7)x’ (ﬂp())x’ (np‘])x! (ﬂpz)x,

(x> ) xs MWDxs Mp5)x> Tpd)xo (m5)x» (mpg)x and (mp)x, are defined. These additional

terms are shown following the expressions for coefﬁmcnts and matrices.

v0 =Ego- (A1)
(X.

:;1 ==L [épl 'g (A2)
ap

O =—>Ep o, (A3)
&r

p 0 = E..p 0> (A4)
ap™

@3";_ d [gg’% 2805 +E051, (A5)
ap™

Opz =—— 12855 ~28p31 (A6)
(l

Ops =——&p3» (A7)

[(Ao)ii I 0 0
Aok = 0 [(Aodix 122 0 with three diagonal elements expressed as (A8)

0 0 [(Aoikln
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[ c
[(Ag) 1 =1+[(—’—)+(°—Z)—(°* DALy - (Cx )1[(

€otr 2 Eo€r EoEr €EoE

+—Re{2agépo&p,}+—;[( )+ (2= o;)]Re{Za’ﬁSI;I,z}
P

EoEr

1 Oy —(Sx 31 By - (Ox L L
+— [ - (]I )(Eoex)lRe{Ep:ap(cm)x}

€r  Eofr EoEr Eokr

1
+—Re {855 Q)5 }
4]

1Oy, Sey_ Sx N (N
+ER [(808k)+(808R) (EOSR)]RC{ZEP'Z (Qp )ijk }

+— [( Ly - ( )][( (A9)
€k  EoEr EoEr EoEr
[(Ag )i[}k 12, =Replace [x—y, y—z, and z—x] in [(Ao)f}k lits (A.10)
[(Ag)ijk 133 = Replace [x—z, y—x, and z—y] in [(Ag)jic i (A.11)
(A DI Y 0
(ﬁ )i’}k = 0 [(A, )i'}k 12 0 with three diagonal elements expressed as  (A.12)
o 0 0 [(ADkIx
Oy o, .. At
A D = 1+[( )+( L)~ ()] — )][( )x — (9«1

€oEr €o€r €o€r 2

1_© z L
+gRe{;a}§§‘I§,o[§:§,1 'glp“,z] }+a'[(€i)+(a8—k - L[Qp,l—g:;,Z] }

1 ©
+— (L) - (o
€k EoEr EoEr Eo€r €oE:

(O NEI (AR

o -ENE1QM) }

——Re{Z(Qp 1y }+——[<—-—)+(8 )-

ERr
+—1—[<f—) EOED) - R (T N Q) (A.13)
€r  Eo€r €o€ €oEr o pd P Tk D>
[(A1)jjx 122 =Replace [x—=y, y—z, and z—x] in [(A;)iy Iy (A.14)
[(A})jjx ]33 = Replace [x—z, y—=x, and z—y] in [(A )iy Iy (A.15)
(COTO! 0 0
Q= 0 (g O with three diagonal elements expressed as ' (A.16)

0 0 ()3

13




o,
Zeyo (-———)] [(—) - (A.17)
EoEr EoEr EoEr Eo€r
(£24),2, =Replace [x—y, y—z, and z—x] in (24);;, (A.18)
(£24)33 =Replace [x—z, y—X, and z—y] in (Q4);, (A.19)
(M 0 0
Q= 0 (€2,)2 0 with three diagonal elements expressed as (A.20)
o 0 0 ()
2 X G X
(O =-1+[( L)+ () - (= )] +H(—) - (= Zx )x — (@)1, (A21)
ErR Eo€r EoEr Eo€r Eo€r EoEr
(8,),, =Replace [x—y, y—z, and z—x] in (R,)y;, (A22)
()33 =Replace [x—z, y—x, and z—y] in (Q,);;, (A.23)

€51 0 0
2 0 (Q3)n O with three diagonal elements expressed as (A.24)

0 0 (R3)3

o
I

(€221 =[( L) (% % )][( £) - )xs (A.25)
133 Eo€r E€oEr
(82,) 4, =Replace [x—y, y—z, and z—x] in (2;),;, (A.26)
(£2,)33 =Replace [x—z, y—X, and z—y] in (Q,),;, (A27)
-I—(Q ) 0 0
e o2
Q,= 0 21—(92)22 0 with three diagonal elements expressed as (A.28)
= R
1
0 0 —(Q
. €r (€22)3
(Wo)x O Y
Q= 0 )y 0 | (A29)
0 0 (wy),
(W — (W)l 0 0
Qs = 0 [wp)y —(wy)y] 0 . (A.30)
0 0 ((vy), —(wy), ]
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(y))x 0 O
Q= 0 (y)y 0 |, (A31)
L0 0wy,

Tood)n O 0
r ;j 0= 0 (Fg;,o ) O with three diagonal elements expressed as (A32)
- 0 0 (Tro)ss

(ngo)n =[§:;,0

+[(———) - % )][( x> (A.33)
(T'y0) 22 =Replace [x—y, y—z, and z—x} in (Tpp)y; (A.34)
(Ty0)3 =Replace [x—z, y—x, and z—y] in (Typ)1; (A.35)
NL
[0/
—— (T 0 0
: NL
Fg(l,‘ = 0 O (I“g(l)‘ )2 0 with three diagonal elements expressed as (A.36)
0 0 T )3
z NL NL NL NL
(T =1 = R)+<Eoek) (= —) 1161 3603+ 3605 G|
)’ NL NL NL. NL
+[(808R) (Eo&z)][( €€ ) -2 (CP 3)" + (gpﬂ)x "(CP,S)x -2 (Cp,ﬁ)x + (C’Pﬂ)x]’
(A.37)
(1":(‘,“)22 = Replace [x—y, y—z, and z—x] in (T gf; e (A.38)
(T )33 = Replace [x—z, y—x, and z—y] in (Tpg)y; » (A.39)
NL
Q
=@, 0 0
. R
1‘;‘} = 0 o —— (T Y2 0 with three diagonal elements expressed as (A.40)
—_— €r
NL
Q.
0 0 —— @)
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(FNL)U-[(—)+< —Z)—( *)]lzgﬁé—4g2%+2g;{‘;]

EoEr EoEr
Oy Oy NL NL. NL NL
+ —(— -2 -2 +2 , (A4l
[( anR) (80ER )][( 80 N X (Cp,6)x (vaﬁ)x (Cpﬂ)x ] ( )
(), = Replace [x—y, y—z, and z—x] in (T )1y » (A42)
T g{‘ )33 =Replace [x—z, y—x, and z—y] in (1‘,1‘,‘} s (A43)
NL
Q,
—‘-’;— T 0 0
o
I‘gg‘ = 0 8—‘;- (l"g{“ )2 0 with three diagonal elements expressed as (A.44)
0 0 (I‘ 2 )33

T =1 (—>+( NN ]
+[(—= x -, 1, A.45
[~ —)- (m)u( —~ (S9! (A.45)
(T0%) 5, = Replace [x—y, yoz, and z—x] in (Tp3 1 » . (A.46)
(0% )33 =Replace [x—z, y—x, and z—y] in (Tp2 )11 (A47)
NL
(o7
LR(I‘;%)U 0 0
NL OEEL NL . .
I3 = 0 _G—(FM Y22 0 with three diagonal elements expressed as (A.48)
= R
NL
Q
0 0 =9
Er

(F;g‘)ll §po[§,§nf 2§p2+§p3]+[(——)+( o 2@2%"'%214:]

EoEr
+[<———) = )][( —5)- bs)x —2 (c{ft)x + (G 1s (A49)
Er €oEr Eok ’
(T),, = Replace [x—>y, y—z, and z-x] in (Tp3 )11 (A.50)
(T2 )33 = Replace [x—z, y—x, and z—-y] in (T3 )13 (A.51)
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1

=

=

c
ot i =Epp [2E55 — 2605 1+[ (=

p.5 s = &po §p3 +[(—)+(£

NL

a,

2 Tu 0 0
R

NL
0 gf—-— (I‘gg‘)zz 0 with three diagonal elements expressed as (A.52)
R

aEL

NL
( p.4 )33

01 ) (Oay [ 2cM oML
808R)+ (EOER) (808R) 1l 2§p,3 2gp’4 ]

HED) - (o N -2, 1, (A53)
Tp4 )2 =Replace [x—y, y—z, and z—x] in (Tp§)y; » (A.54)
T4 )33 =Replace [x—z, y—x, and z—y] in (Tp )y; (A.55)

( 9‘—"Ni o) 0 0
0 ( p.5 s )22 0 with three diagonal elements expressed as (A.56)
0 0 i"?(r;% )33

—£)- (80;)—(7;“) oy

Er
+[(—) s - )][( x s (AST)
Er
1";%)22 = Replace [x—y, y—z, and z—x] in (l";g‘ s (A.58)
Ip5 )33 =Replace [x—z, y—x, and z—y] in (s )y, » (A.59)
L
Op
'E:(np‘o)x 0 0
a5 .
= 0 < oy 0 , (A.60)
R
L
Op
0 0 ;(n]‘io)z
L
Q
el ARG 0 0
R
— op L L
= 0 g[(np,,)y —(n52)y] 0 , (A.61)
oy L
0 0 52 = (75).]
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L

o
@), O 0
R
L o_ oF L
=== R
L
Q
Y 0 8_9 (ﬂ:;’z)z
R
o N NL
R
S 0 B ), — (), 0 (A.63)
p,0 en Tpoly ~\Tp1/y .
op
0 0 _[(752]6)1 _(ng,lf)z]
Er
NL
Q
—— () 0 0
=l o @b, o (A.64)
L’l_ €r npvl y ? .
op-
0 0
€r (ngl})z
NL
[0
@Sy, 0 0
€r AL
Q,
155 = 0 —E"—(Hﬁf’i )2 0 (A.65)
—— R
L gy
0 0 —1 p.2 )33
€r
@Ip5) = (mh5)x =2 (Mp5)x + (mpd)x — (Mo $)x +2 (M) x —(Mp7)x » (A.66)
(I1}%),, =Replace [x—ylin (T155);, (A67)
(T1)5)33 =Replace [x—z] in (T155);;» (A.68)
NL
04
L@y 0 0
Er NL
[0
Mp3 = 0 =MHn 0 (A.69)
E——" R a‘r;“‘
0 0 I15)s
Er
A = %), —2 (%) —2 (9 + (mh5)s» (A.70)
(I13%),, =Replace [x—ylin (IT5)y; (A1)
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(n;%)ss =Replace [x—z] in (II",?{‘;)11 ,

(n b 11 0 0

Hg{; = 0 (Hp4)22 0
N'L

0 0 (n

Mo = (5 ~ (%) 5
(T1)%) 5, =Replace [x—yl in (TIN),;,

(I1 2{; )33 = Replace [x—z] in (HS{I‘; s

(II s 0 0

NL NL
H p.5 = 0 (H )22 0
0 0 (H

(nps)ll —(np 5) 2(np 6))( +(n§1i)x ’
(I'IF,S)22 =Replace [x—>y] in (Hps M1

(T15% )33 =Replace [x—z] in (IT}5),,

5)33

(H )11 0 0
HI:‘IG‘ = 0 )22 0
v
0 0 (Hp6)33

(Hps)n-z(n ) 2(7(’. )x,
(I1N%), =Replace [x—>yl in (TIN%),;,

(I13% )33 =Replace [x—z] in TN »

(A.72)

(A.73)

(A.74)

(A.75)

(A.76)

(A7)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)



with elements defined as follows

gLy =exp[-(v)At],

1—exp[—(vp)At]

At
L = | drexpl-(yp)tl=At[
P! ;‘; P (YAt

i 1—exp[~(v;)At]
£, = ar () expl-rpyel = st Yo)™ —expl-(yadl,
0

(v5)At (Y5)At
Eng =exp[—(yp AL,

1-exp[~(yy )At]
(vp At

At
et = [dvexpl- () = At
0

i 1—exp[—(Y))At
&3k = [ ar ) expl-(ptr] = 1 plreeltp el
0

NL NL
(Yp DAt (vp At

At
NL _ T .2 _NL
Ep3 = !dt vl exp[~(Y, 1]

1 [ 1 L L 2
=At 1-exp{—(y, HAt]| —exp[-(y, HAtIl ————=11"
TN AT e ety sl [(v;‘HAtlzl]

[_1 exp|- (Yp)At]]

At T
= | dr | dvexpl-(yH)(t-T)] = (A)®
.([ ,(‘: P (VA (Yp)AL

A 2 ) 1= —exp[-(y)At]
L T L P
Gy o= | dt | v’ () exp[—(¥, )T-1)]=(At)? —-
P2 { { At f (% )At[2 <yp>m (Yp)At 11,

1 [1 1—-exp[—(Y, )At]]

At T
NL , NL 2
M= | dt | dvexpl—(v, NT—T)1=(Ab)
pd ! { ° (1p DAt (rp DA
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(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A91)

(A92)
(A.93)
(A.94)

(A95)




gpz—jdrjdr (—)exp[ G E-1)]

[__ _ I-expl- (Yp DAL ]
(y,, )AL 2 (v )At (7p )AL

At k1
NL_ s T2t o NLyo
s,,,s—!drldr (=) el =)

1 [1 1 2 2
WAL 3 hA {(yp W (DA

=(At)? al —exp[—(y:fl‘)At]]] ,

At T
NL _ , T3 NL ,
= !dr {dr () expl-(1y (e —)
1 [1_ 1 3 6 6

+ - +
@A 4 @NMa [MA? (A M)A

= (At i- exp[—(YE"“)At]]] ’

For the x component:

(o}
& 1—exp[~—2-)At]
(W), = ." dexpl- c Eokr ]
Eokr X
0 (—)At
Eokr
| lepHan)]
(wz)x = = At = [ EoEr ,
(o)At
EoEr
1- exp[( -)At]
(@)x = jdr —1- RN §

At T
@9 = [ar
0 0

- X
(—)At (—2)At (=—)At
EoEr Eo€r EoEr

21

(A.96)

(A.97)

(A.98)

(A.99)

(A.100)

(A.101)

(A.102)

(A.103)



T

Coo)x = fdr Idt exp[~(y;)7’] eXP[—
0

_ L 1-exp[—
= (At)? ! [1 exP[L(Y" ad_ Eokr ] (A.104)
(vp)AL (o

0. L)y = J.d'c j.dr Id'c exp[—('yp)(r

- @’ {[ ][1—

1-exp[- ( )At]

]

a5t Ox Sxar
808R Eo€r
1-ex [—('YL)At] 1-exp[- ( )At]
u| 1 1l pL P ]} (A.105)
(vg)AL (XAt
EoER
by, = ‘[ dzj'dr _[dr (—)exp[ ARE—) expl~(2T =)
0
1-exp[- ( 2 )A]
{[ ][g-[l— et ]]
( p)A (—X)At (vp )AL
EoER €o€ EoEr
- 1-exp[- ( )At]
1- A
+[ - 1 ][ ][ expl (Y JAt] ]} (A.106)
(._X.)At - (Y:‘; )At (Yp )At (Yp )At ( )At
Eo€r Eo€r
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For the y component:

Replace x—y of matrix elements defined for the x component above.

For the z component:

Replace x—z of matrix elements defined for the x component above.
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